
Optimized Analytical Processing

New Features with 11g R2
Hüsnü Şensoy

Global Maksimum Data & Information Technologies

Founder, VLDB Expert

husnu.sensoy@globalmaksimum.com

 Introduction

• Understanding Optimized Analytical Processing
Capabilities

 New Capabilities by 11g Release 2

• Multi-Predicate Partition Pruning

• Intelligent Multi-Branch Execution

• NULL Aware ANTI JOIN

• Hash-Based DISTINCT Aggregation

 Conclusion

husnu.sensoy@globalmaksimum.com

Agenda

Who am I ?

husnu.sensoy@globalmaksimum.com

 Data & Information expert on VLDB environments
• DWH

• Data Mining

• Inference Systems

• Data Archiving Solutions

• Niche Storage Technologies

• Recovery Strategies & Solutions

• HA Systems

 Oracle ACED on BI field
• Only one in Turkey

• Still the youngest one all over the community.

 DBA of the Year 2009
• 7th and still the youngest all over the world.

• Only one in Turkey

 Blogger @ http://husnusensoy.wordpress.com

 Member of Oracle CAB for 12g DWH development

 Worldwide presenter of Oracle conferences and user group events

http://husnusensoy.wordpress.com/

Introduction

Optimized Analytical Processing New Features with 11g R2

husnu.sensoy@globalmaksimum.com

 Optimized Analytical Processing Capabilities are those
features implemented by Oracle on CBO, SQL execution, and
expression manager that transparently improve SQL
performance for your data crunching processes.

 The keyword is transparency. In many circumstances, you
don’t need to change any configuration to enable those
capabilities.

 Oracle keeps saying «SQL is X times faster in this release»
mainly due to those features.

 It is usually very hard to hear about them until the product is
mature or some of them cause problems in your production.

husnu.sensoy@globalmaksimum.com

Optimized Analytical Processing

Capabilities

 In 10g one of the most important headaches for large DWH
customers was related to new hash group by optimizations. Many
customers have disabled them with the guidance of support (
_gby_hash_aggregation_enabled). So being familiar with
new SQL engine will let you a better understanding of product and
give you the chance to take remedial actions.

 Most people are annoyed with SQL plan changes with each release.
They usually choose to freeze them using various techniques.
Understanding those new features will let you to understand the
reasons behind some plan changes in new release.

 Just to appreciate the effort made by those developers optimizing
our lives.

husnu.sensoy@globalmaksimum.com

Why should I care about them ?

Multi-Predicate Partition

Pruning

Optimized Analytical Processing New Features with 11g R2

husnu.sensoy@globalmaksimum.com

 In one of recent surveys, Oracle partitioning seems to be the
Top 1 feature used by large DWH sites.

 Range partitioning not only helps ILM in DWH but also
improves query performance by partition pruning most of the
time.

 Until 11gR2 Oracle is biased on using static partition pruning
rather than dynamic one.

 Multi-predicate pruning is the idea of utilizing each and every
possible pruning opportunity to reduce the amount of data to
be read from disk or buffer cache.

husnu.sensoy@globalmaksimum.com

Partition Pruning

SH.SALES

1995-1996
One partition per
year

1997
One partition for
each half of a year

1998-2003
One partition for
each quarter of a year

husnu.sensoy@globalmaksimum.com

Partitioning Scheme for SH.SALES

select /*+ FULL (s) FULL (t) */ count(*)

 from sh.sales s, sh.times t

 where s.time_id = t.time_id

 and t.fiscal_month_name in ('February')

 and s.time_id between

 to_date('01-JAN-1998', 'DD-MON-YYYY')

 and

 to_date('01-JAN-2001', 'DD-MON-YYYY');

husnu.sensoy@globalmaksimum.com

A Simple Query on SH.SALES

Pruning Idea Description
Partitions to be scanned

on SH.SALES

No Pruning Scan all 28 partitions.

Static Pruning
Use predicate on time_id column of
SH.SALES

Scan only 13 partitions.

Dynamic Pruning

Build a filter list for month February

on SH.TIMES table

then access to SH.SALES table.

Scan only 5 partitions

Static + Dynamic Pruning

(Multi-predicate Pruning)

Use static & dynamic pruning

together.
Scan only 3 partitions

husnu.sensoy@globalmaksimum.com

Partition Pruning Opportunities on

SH.SALES select /*+ FULL (s) FULL (t) */ count(*)

 from sh.sales s, sh.times t

 where s.time_id = t.time_id

 and t.fiscal_month_name in ('February')

 and s.time_id between

 to_date('01-JAN-1998', 'DD-MON-YYYY')

 and

 to_date('01-JAN-2001', 'DD-MON-YYYY');

Execution Plan

Plan hash value: 68236240

Id Operation Name Rows Bytes Cost (%CPU) Time Pstart Pstop

0 SELECT STATEMENT 1 24 217 (11) 00:00:03

1 SORT AGGREGATE 1 24

*2 HASH JOIN 41164 964K 217 (11) 00:00:03

*3 TABLE ACCESS FULL TIMES 84 1344 9 (0) 00:00:01

4 PARTITION RANGE ITERATOR 684K 5344K 202 (9) 00:00:03 5 17

*5 TABLE ACCESS FULL SALES 684K 5344K 202 (9) 00:00:03 5 17

husnu.sensoy@globalmaksimum.com

In 10.2.0.4

set autot trace exp stat

alter sesssion set traacefile_identifier = ‘multiPredicatePruning’;

alter session set events ‘10128 trace name context forever, level 2’;

select /*+ FULL (s) FULL (t) */ count(*)

 from sh.sales s, sh.times t

 where s.time_id = t.time_id

 and t.fiscal_month_name in ('February')

 and s.time_id between

 to_date('01-JAN-1998', 'DD-MON-YYYY')

 and

 to_date('01-JAN-2001', 'DD-MON-YYYY');

alter session set sql_trace = false;

husnu.sensoy@globalmaksimum.com

A Simple Query on SH.SALES with

Tracing Add-ons

husnu.sensoy@globalmaksimum.com

Execution Plan in 11.2.0.1

Execution Plan

Plan hash value: 3278936322

Id Operation Name Rows Bytes Cost (%CPU) Time Pstart Pstop

0 SELECT STATEMENT 1 24 322 (8) 00:00:05

1 SORT AGGREGATE 1 24

*2 HASH JOIN 43252 1013K 322 (8) 00:00:05

3 PART JOIN FILTER CREATE :BF0000 91 1456 13 (0) 00:00:01

*4 TABLE ACCESS FULL TIMES 91 1456 13 (0) 00:00:01

5 PARTITION RANGE AND 690K 5393K 303 (7) 00:00:05 KEY(AP) KEY(AP)

*6 TABLE ACCESS FULL SALES 690K 5393K 303 (7) 00:00:05 KEY(AP) KEY(AP)

...

Partition Iterator Information:

partition level = PARTITION

call time = RUN

order = ASCENDING

Partition iterator for level 1:

iterator = ARRAY [count= 3, max = 28] = 4 8 12

...

husnu.sensoy@globalmaksimum.com

10128 Trace Content in 11.2.0.1

 Partitioning is and will be Number One trick of very

large data management and processing.

 Multi-predicate Partition Pruning boosts Oracle's

pruning opportunities for cases where several predicates

can result in pruning.

husnu.sensoy@globalmaksimum.com

Remarks

Intelligent Multi-Branch

Execution

Optimized Analytical Processing New Features with 11g R2

husnu.sensoy@globalmaksimum.com

Horizontal Partial Indexing

husnu.sensoy@globalmaksimum.com

 As you may all know, Oracle allows
UNUSABLE index partitions starting
from early releases of partitioning
technology.

 Many data warehouses wish to disable
some old index partitions to reveal the
burden of maintaining them during
ELT.

 Intelligent Multi-Branch Execution is
a query rewrite technique to split a
single SQL statement based on a
partitioned table having LOCAL
indices.

VALID
LOCAL
INDEX

UNUSABLE
LOCAL
INDEX

QUERY
RESULT

select channels.channel_desc,

 sum(sales.amount_sold) as total_amount

 from sh.sales, sh.products, sh.channels

 where channels.channel_id = sales.channel_id

 and products.prod_id = sales.prod_id

 and channels.channel_class = 'Direct'

 and products.prod_categorY = 'Photo'

 group by channels.channel_desc

 order by 2 desc;

husnu.sensoy@globalmaksimum.com

Another Simple Query on

SH.SALES

husnu.sensoy@globalmaksimum.com

Execution Plan

ALTER INDEX SH. SALES_CHANNEL_BIX MODIFY PARTITION SALES_1995 UNUSABLE;

ALTER INDEX SH. SALES_CHANNEL_BIX MODIFY PARTITION SALES_1996 UNUSABLE;

ALTER INDEX SH. SALES_CHANNEL_BIX MODIFY PARTITION SALES_H1_1997 UNUSABLE;

ALTER INDEX SH. SALES_CHANNEL_BIX MODIFY PARTITION SALES_H2_1997 UNUSABLE;

ALTER INDEX SH. SALES_CHANNEL_BIX MODIFY PARTITION SALES_Q1_1998 UNUSABLE;

ALTER INDEX SH. SALES_CHANNEL_BIX MODIFY PARTITION SALES_Q2_1998 UNUSABLE;

ALTER INDEX SH. SALES_CHANNEL_BIX MODIFY PARTITION SALES_Q3_1998 UNUSABLE;

ALTER INDEX SH. SALES_CHANNEL_BIX MODIFY PARTITION SALES_Q4_1998 UNUSABLE;

husnu.sensoy@globalmaksimum.com

Disable A Few LOCAL Index

Partitions

husnu.sensoy@globalmaksimum.com

Execution Plan in 10.2.0.4

husnu.sensoy@globalmaksimum.com

Execution Plan in 11.2.0.1

 Intelligent Multi-Branch Execution is an invaluable new

optimization for sites using LOCAL indexes.

 Keep in mind in order to use this optimization

SKIP_UNUSABLE_INDEXES parameter should set to

be TRUE.

 This option can be disabled by setting

_OPTIMIZER_TABLE_EXPANSION parameter to

FALSE.

husnu.sensoy@globalmaksimum.com

Remarks

NULL Aware ANTI-JOIN

Optimized Analytical Processing New Features with 11g R2

husnu.sensoy@globalmaksimum.com

 Oracle can use ANTI JOIN execution plan (with Nested Loop,
Hash, or Merge join options) in case that a SQL statement contains
NOT IN or NOT EXISTS clauses (or something rewritten to this).

 Hash Anti-Join is known to be an optimal execution plan for many
large data warehouse queries containing above clauses.

 One major problem about classical anti-join is that due to some
design errors like constraint ignorance, Oracle will reject using anti-
join (not to generate erroneous result sets) and put a FILTER step
instead (Refer one of my earlier blog posts).

 FILTER is usually CPU consuming and never-ending step for the
join of large datasets.

husnu.sensoy@globalmaksimum.com

ANTI JOIN

http://husnusensoy.wordpress.com/2007/11/27/some-relational-algebra/

select count(*) from sh.sales

 where time_id not in (select time_id

 from sh.times);

husnu.sensoy@globalmaksimum.com

Yet Another Simple Query on

SH.SALES

husnu.sensoy@globalmaksimum.com

Anti Join

alter table SH.SALES modify TIME_ID NULL;

husnu.sensoy@globalmaksimum.com

Release NOT NULL Constraint on

SH.SALES

husnu.sensoy@globalmaksimum.com

Execution Plan in 10.2.0.4

husnu.sensoy@globalmaksimum.com

Execution Plan in 11.1.0.6+

create table sh.sales_new nologging

tablespace users as

select s.*,

 to_char(time_id,'DD') day_id,

 to_char(time_id,'MM') month_id,

 to_char(time_id,'YYYY') year_id

from sh.sales s;

create table sh.times_new

nologging tablespace users as

select t.*,

 to_char(time_id,'DD') day_id,

 to_char(time_id,'MM') month_id,

 to_char(time_id,'YYYY') year_id

from sh.times t;

alter table sh.sales_new modify day_id not null;

alter table sh.sales_new modify month_id not null;

alter table sh.sales_new modify year_id not null;

alter table sh.times_new modify day_id not null;

alter table sh.times_new modify month_id not null;

alter table sh.times_new modify year_id not null;

husnu.sensoy@globalmaksimum.com

Create SH.SALES_NEW &

SH.TIMES_NEW

select count(*)

from sh.sales_new

where (day_id,

 month_id,

 year_id) not in (select day_id,

 month_id,

 year_id

 from sh.times_new);

husnu.sensoy@globalmaksimum.com

How about this Query ?

Execution Plan

--

Plan hash value: 3458658284

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 22 | 1527 (1)| 00:00:19 |

| 1 | SORT AGGREGATE | | 1 | 22 | | |

|* 2 | HASH JOIN RIGHT ANTI| | 9188 | 197K| 1527 (1)| 00:00:19 |

| 3 | TABLE ACCESS FULL | TIMES_NEW | 1826 | 20086 | 17 (0)| 00:00:01 |

| 4 | TABLE ACCESS FULL | SALES_NEW | 918K| 9870K| 1507 (1)| 00:00:19 |

husnu.sensoy@globalmaksimum.com

Simple Execution Plan

alter table sh.times_new modify year_id null;

husnu.sensoy@globalmaksimum.com

Remove Only One NULL

Constraint on SH.TIMES

Execution Plan (NA)

Pre 11g Release 2 By 11g Release 2

husnu.sensoy@globalmaksimum.com

alter table sh.times_new modify year_id not null;

alter table sh.sales_new modify year_id null;

husnu.sensoy@globalmaksimum.com

Remove Only One NULL

Constraint on SH.SALES

Execution Plan (SNA)

Pre 11g Release 2 By 11g Release 2

husnu.sensoy@globalmaksimum.com

alter table sh.times_new modify year_id null;

alter table sh.sales_new modify year_id null;

husnu.sensoy@globalmaksimum.com

Remove Only One NULL Constraint on

SH.SALES & SH.TIMES

Execution Plan (NA)

Pre 11g Release 2 By 11g Release 2

husnu.sensoy@globalmaksimum.com

 NULL Aware ANTI JOIN is a great enhancement for
constraint ignorant databases.

 SNA is first introduced in 11g Release 1, but multi column
support is now available by 11g Release 2

 SNA is not a way to cheat SQL design practices.

 This option can be disabled by setting
_optimizer_null_aware_antijoin parameter to
FALSE

 To learn more about NULL Aware ANTI JOIN, refer to great
post by Greg Rahn.

husnu.sensoy@globalmaksimum.com

Remarks

http://structureddata.org/2008/05/22/null-aware-anti-join/
http://structureddata.org/2008/05/22/null-aware-anti-join/
http://structureddata.org/2008/05/22/null-aware-anti-join/

Hash-Based DISTINCT

Aggregation

Optimized Analytical Processing New Features with 11g R2

husnu.sensoy@globalmaksimum.com

 After 10g Oracle starts to use HASH GROUP BY instead of

SORT GROUP BY more extensively as it is appropriate.

 This is fundamentally related with hashing has a lower time

complexity (O(n)) than sorting (O(nlogn)).

 DISTINCT clause inhibits Oracle from using HASH GROUP

BY and force it to utilize SORT GROUP BY instead.

 And some unlucky Telco customers heavily utilizes

DISTINCT COUNT clause in their queries (number of

distinct subscribers).

husnu.sensoy@globalmaksimum.com

HASH GROUP BY

select sum(QUANTITY_SOLD) total_sold ,

 count(distinct channel_id) ndiff_channel

from sh.sales

group by prod_id;

husnu.sensoy@globalmaksimum.com

Yet Another Simple Query on

SH.SALES

husnu.sensoy@globalmaksimum.com

Pre 11.2.0.1 Execution Plan

husnu.sensoy@globalmaksimum.com

Execution Plan by 11.2.0.1

select sum(QUANTITY_SOLD) total_sold ,

 count(distinct channel_id) ndiff_channel,

 count(distinct time_id) ndiff_time

from sh.sales

group by prod_id;

husnu.sensoy@globalmaksimum.com

Be Careful !!!

Execution Plan

--

Plan hash value: 4109827725

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 72 | 1296 | 515 (7)| 00:00:07 | | |

| 1 | SORT GROUP BY | | 72 | 1296 | 515 (7)| 00:00:07 | | |

| 2 | PARTITION RANGE ALL| | 918K| 15M| 488 (2)| 00:00:06 | 1 | 28 |

| 3 | TABLE ACCESS FULL | SALES | 918K| 15M| 488 (2)| 00:00:06 | 1 | 28 |

--

husnu.sensoy@globalmaksimum.com

Even in 11.2.0.1

 I believe, this feature have no customer coverage as much as
others but if you are one of those distinct counters, you will
definitely benefit from it.

 Actually the part I have introduced is a part of all hash group
by optimizations introduced with 11g Release 2. For
appropriate use of all optimizations you might need to fix
Bug 9148171 in 11.2.0.1.

 More than one distinct count do not work.

 This option can be disabled by setting
_optimizer_distinct_agg_transform parameter
to FALSE.

husnu.sensoy@globalmaksimum.com

Remarks

 There are many more optimized analytical processing

capabilities introduced in Oracle 11g Release 2.

 Those are all about fine tuning the existing features

instead of introducing new fancy ones.

 And to be honest that’s what large customers want.

husnu.sensoy@globalmaksimum.com

Conclusion

husnu.sensoy@globalmaksimum.com

&

